A. Babaluo. The solubility of CO2 in these solvents increases in the following order: glycerol < 1,2-propanediol < methanol ≈ ethanol. of moles in solution. Wei Qiang, Ling Zhao, Tao Liu, Zhen Liu, Xiulu Gao, Dongdong Hu. Ethanol solubility. Techno-economic analysis of alternative processes for alcohol-assisted methanol synthesis from carbon dioxide and hydrogen. Multiphase flash calculations for gas hydrates systems. Stephanie Peper, José M.S. Energy Efficient Absorbents for Industry Promising Carbon Dioxide Capture. Hongwei Li, Zhigang Tang, Zhimin He, Xia Gui, Longpeng Cui, Xian-zhong Mao. Arron C. Deacy, Alexander F. R. Kilpatrick, Anna Regoutz, Charlotte K. Williams. Anthraquinone thin-film electrodes for reversible CO
Solubility Properties and Spectral Characterization of Dilute SO2 in Binary Mixtures of Urea + Ethylene Glycol. Exploiting an Alternative CO2 Absorption Process by Efficient Solvent Mixture. Thermodynamics functions for the solution process were calculated and compared with the predictions of the Pierotti gas solubility theory. Systematic study of alcohols based co-blowing agents for polystyrene foaming in supercritical CO2: Toward the high efficiency of foaming process and foam structure optimization. Xia Gui, Wei Wang, Qiang Gao, Zhi Yun, Maohong Fan, and Zuhua Chen . Hui Guo, Chenxu Li, Xiaoqin Shi, Hui Li, Shufeng Shen. Measurement and modeling of infinite dilution activity coefficients of organic compounds in an equimolar ionic liquid mixture of [Bmim]Cl and [Bmim][Tf2N]. Muhammad Saad Qureshi, Tom Le Nedelec, Hernando Guerrero-Amaya, Petri Uusi-Kyyny, Dominique Richon, Ville Alopaeus. J. Burger, N. Asprion, S. Blagov, and M. Bortz . Investigation of dynamic surface tension in gas–liquid absorption using a microflow interfacial tensiometer. In this article, the solubility of CO2 in methanol, ethanol and 1,2-propanediol is measured by a constant-volume method for temperatures between 283.15 K and 373.15 K and for pressures below 6.0 MPa. You’ve supercharged your research process with ACS and Mendeley! Zhijun Zhao, Xiao Xing, Zhigang Tang, Yongsheng Zhao, Weiyang Fei, Xiangfeng Liang, Zhimin He, Shaofeng Zhang, Dong Guo. Excess properties and spectroscopic studies for binary system of polyethylene glycol 600 + 1,2-ethanediamine at T= (298.15, 303.15, 308.15, 313.15, and 318.15) K. Xianlong Meng, Xuefang Li, Huihu Shi, Jiangman Wu, Zhaojun Wu. Viscosity and density data for the ternary system water(1)–ethanol(2)–ethylene glycol(3) between 298.15K and 328.15K. Structure-activity relationship for CO2 absorbent. Quantitative structure-property relationship (QSPR) for prediction of CO2 Henry’s law constant in some physical solvents with consideration of temperature effects. capture and release. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Solubility of CO2 in methanol, ethanol, 1,2-propanediol and glycerol from 283.15 K to 373.15 K and up to 6.0 MPa. Yun Li, Qing Liu, Weijia Huang, Jie Yang. In terms of mol / litre, solubility will be - Zhixin Lyu, Hongfang Ma, Haitao Zhang, Weiyong Ying. chain lengths from 40 to 54 were measured in ethanol over a temperature range of 30–807C. No literature data was available for this wide range of temperature for ethanol, methanol, 1,2-propanediol and glycerol. Prediction of CO2 absorption by physical solvents using a chemoinformatics-based machine learning model. Measurements over a wide range of temperature and pressure. Ricardo R. Wanderley, Gonzalo J. C. Ponce. Fonseca, Ralf Dohrn. Solubility of dilute SO2 in 1,4-dioxane, 15-crown-5 ether, polyethylene glycol 200, polyethylene glycol 300, and their binary mixtures at 308.15K and 122.66kPa. Marie Décultot, Alain Ledoux, Marie-Christine Fournier-Salaün, Lionel Estel. Investigating opportunities for water-lean solvents in CO2 capture: VLE and heat of absorption in water-lean solvents containing MEA. Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Bubble point pressures and densities of hexamethyldisiloxane–carbon dioxide binary mixture using a constant volume view cell. Feng Sha, Tianxiang Zhao, Bo Guo, Xinxin Ju, Lihua Li, Jianbin Zhang. In this paper the equilibrium solubility of carbon dioxide in 1.0 M. 2.0 M and 4.0 M 2(methylamino)ethanol (MAE) is measured at 303, 313 and 333 K. and at CO(2) partial pressures ranging from 1 to 100 kPa using stirred cell reactor. If solvation energy of solvent is greater than the lattice energy of ionic solid then the ionic solid dissolves in the given solvent. https://doi.org/10.1021/acs.energyfuels.0c00880, https://doi.org/10.1021/acs.energyfuels.6b03458, https://doi.org/10.1016/j.supflu.2020.105052, https://doi.org/10.1016/j.jclepro.2020.125153, https://doi.org/10.1007/s13738-020-01945-8, https://doi.org/10.1016/j.supflu.2019.104718, https://doi.org/10.1016/j.energy.2020.117166, https://doi.org/10.1038/s41557-020-0450-3, https://doi.org/10.1002/9781119593324.ch4, https://doi.org/10.1016/j.jct.2019.105968, https://doi.org/10.1016/j.ijhydene.2020.01.230, https://doi.org/10.1016/j.jcou.2019.09.015, https://doi.org/10.1016/j.seppur.2019.115883, https://doi.org/10.1007/s10765-019-2588-z, https://doi.org/10.1016/j.jct.2019.05.003, https://doi.org/10.1016/j.jct.2019.05.017, https://doi.org/10.1016/j.supflu.2019.04.019, https://doi.org/10.1016/j.ijggc.2019.07.001, https://doi.org/10.1007/s10311-019-00874-0, https://doi.org/10.1016/j.jcou.2019.04.020, https://doi.org/10.1016/j.fluid.2019.01.028, https://doi.org/10.1016/j.apenergy.2019.02.019, https://doi.org/10.1016/j.fluid.2018.10.007, https://doi.org/10.1016/j.fluid.2018.11.016, https://doi.org/10.1016/j.jct.2018.07.021, https://doi.org/10.1016/j.fluid.2018.07.029, https://doi.org/10.1016/j.fluid.2018.04.014, https://doi.org/10.1016/j.fluid.2017.12.004, https://doi.org/10.1016/j.fluid.2017.11.026, https://doi.org/10.1016/j.energy.2017.10.116, https://doi.org/10.1016/j.ces.2017.01.051, https://doi.org/10.1007/s00396-017-4124-7, https://doi.org/10.1007/s11814-017-0018-0, https://doi.org/10.1016/j.ijggc.2017.02.011, https://doi.org/10.1016/j.jct.2016.10.030, https://doi.org/10.1007/978-3-319-47262-1_10, https://doi.org/10.1007/s11705-016-1603-1, https://doi.org/10.1016/j.apsusc.2016.08.117, https://doi.org/10.1016/j.molliq.2016.03.019, https://doi.org/10.1016/j.molliq.2016.03.071, https://doi.org/10.1016/j.apcata.2015.12.030, https://doi.org/10.1016/j.cjche.2015.08.007, https://doi.org/10.1016/j.jct.2015.08.005, https://doi.org/10.1080/00319104.2015.1058379, https://doi.org/10.1016/j.compchemeng.2015.04.008, https://doi.org/10.1016/j.molliq.2015.05.014, https://doi.org/10.1016/j.molliq.2014.07.004, https://doi.org/10.1016/j.jct.2014.01.019, https://doi.org/10.1016/j.fluid.2014.02.029, https://doi.org/10.1016/j.ces.2014.02.004, https://doi.org/10.1016/j.fluid.2013.03.009, https://doi.org/10.1016/j.fluid.2013.01.008, https://doi.org/10.1016/j.jct.2012.08.024, https://doi.org/10.1016/j.supflu.2012.11.017.